光放大

更新时间:2022-10-25 09:03

光放大技术/光放大器指在泵浦能量(电或光)的作用下,实现粒子数反转(非线性光纤放大器除外),然后通过受激辐射实现对入射光的放大。其能直接放大光信号,无需转换成电信号,对信号的格式和速率具有高度的透明性,使得整个光纤通信传输系统更加简单和灵活。它的出现和实用化在光纤通信中引起了一场革命。

背景与简介

光纤通信在进行长距离传输时,由于光线中存在损耗和色散,使得光信号能量降低、光脉冲发生展宽。因此每隔一定距离就需设置一个中继器,以便对信号进行放大和再生,然后送入光纤继续传输。传统采用的方案是光——电——光的中继器,其工作原理是先将接收到的微弱光信号经光电检测器转换成电流信号,然后对此电信号进行放大、均衡、判决等信号再生,最后再通过半导体激光器完成电光转换们重新发送到下一段光纤中去。在光纤通信系统传输速率不断提高的现代通信中,这种光——电——光的中继变换处理方式的成本迅速增加,已经不能满足现代通信传输的要求。

光放大器因此应运而生,光放大技术/光放大器能直接放大光信号,无需转换成电信号,对信号的格式和速率具有高度的透明性,使得整个光纤通信传输系统更加简单和灵活。它的出现和实用化在光纤通信中引起了一场革命。

光放大器的开发成功及其产业化是光纤通信技术中的一个非常重要的成果,它大大地促进了光复用技术、光孤子通信以及全光网络的发展。顾名思义,光放大器就是放大光信号。在此之前,传送信号的放大都是要实现光电变换及电光变换,即O/E/O变换。有了光放大器后就可直接实现光信号放大。光放大器主要有3种: 光纤放大器、拉曼放大器以及半导体光放大器。光纤放大器就是在光纤中掺杂稀土离子(如铒、镨、铥等)作为激光活性物质。每一种掺杂剂的增益带宽是不同的(如图4所示)。掺铒光纤放大器的增益带较宽,覆盖S、C、L频带; 掺铥光纤放大器的增益带是S波段; 掺镨光纤放大器的增益带在1310nm附近。而喇曼光放大器则是利用喇曼散射效应制作成的光放大器,即大功率的激光注入光纤后,会发生非线性效应喇曼散射。在不断发生散射的过程中, 把能量转交给信号光,从而使信号光得到放大。由此不难理解,喇曼放大是一个分布式的放大过程,即沿整个线路逐渐放大的。其工作带宽可以说是很宽的,几乎不受限制。这种光放大器已开始商品化了,不过相当昂贵。半导体光放大器(S0A)一般是指行波光放大器,工作原理与半导体激光器相类似。其工作带宽是很宽的但增益幅度稍小一些,制造难度较大。这种光放大器虽然已实用了,但产量很小。

种类

光放大器主要有2种,半导体放大器及光纤放大器。半导体放大器分为谐振式和行波式;光纤放大器分为掺稀土元素光纤放大器和非线性光学放大器。非线性光学放大器分为拉曼(SRA)和布里渊(SBA)光纤放大器。

光纤放大器

光纤放大器分为稀土掺杂光纤放大器和利用非线性效应制作的常规光纤放大器。

(1)稀土掺杂光纤放大器

稀土掺杂光纤放大器就是在光纤中掺杂稀土离子(如铒、镨、铥等)作为激光活性物质。每一种掺杂剂的增益带宽是不同的。掺铒光纤放大器的增益带较宽,覆盖S、C、L频带;掺铥光纤放大器的增益带是S波段;掺镨光纤放大器的增益带在1310nm附近。

(2)利用非线性效应制作的常规光纤放大器

常规光纤放大器就是利用传输光纤制作的光放大器,它是利用光纤的三阶非线性光学效应产生的增益机制对光信号进行放大。其特点是传输线路和放大线路同为光纤,是一种分布参数式的光放大器。其主要的缺点是由于单位长度的增益系数较低,需要很高的泵浦光功率。这类器件中光纤拉曼放大器(FRA)是其中的佼佼者,它具有在1270~1670nm全波段实现光放大和利用传输光纤作在线放大的优点。

拉曼光放大器

则是利用拉曼散射效应制作成的光放大器,即大功率的激光注入光纤后,会发生非线性效应拉曼散射。在不断发生散射的过程中,把能量转交给信号光,从而使信号光得到放大。由此不难理解,拉曼放大是一个

分布式的放大过程,即沿整个线路逐渐放大的。其工作带宽可以说是很宽的,几乎不受限制。这种光放大器已开始商品化了,不过相当昂贵。

半导体光放大器

一般是指行波光放大器,工作原理与半导体激光器相类似。其工作带宽是很宽的。但增益幅度稍小一些,制造难度较大。这种光放大器虽然已实用了,但产量很小。 在其传输路径内采用光放大器的一种WDM光传输系统中,用于监视并控制放大器运行并从数据传输中作光谱分离的一个监控信号信道,可以与数据复用。披露了一种放大器的结构,它能随传输系统为增加数据处理能力的升级而升级,例如增加波段内和/或沿反方向的数据传输,但不必断开通过该放大器的准备升级的数据传输路径。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}